Abstract

Earthquakes pose significant risks in Taiwan, necessitating effective risk assessment and preventive measures to reduce damage. Obtaining complete building structure data is crucial for the accurate evaluation of earthquake-induced losses. However, manual annotation of building structures is time-consuming and inefficient, resulting in incomplete data. To address this, we propose YOLOX-CS, an object detection model, combined with the Convolutional Block Attention Module (CBAM), to enhance recognition capabilities for small structures and reduce background interference. Additionally, we introduce the Illustration Enhancement data augmentation method to improve the recognition of obscured buildings. We collected diverse building images and manually annotated them, resulting in a dataset for training the model. YOLOX-CS with CBAM significantly improves recognition accuracy, particularly for small objects, and Illustration Enhancement enhances the recognition of occluded buildings. Our proposed approach advances building structure recognition, contributing to more effective earthquake risk assessment systems in Taiwan and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.