Abstract
Computed tomography (CT) is now universally applied into clinical practice with its non-invasive quality and reliability for lesion detection, which highly improves the diagnostic accuracy of patients with systemic diseases. Although low-dose CT reduces X-ray radiation dose and harm to the human body, it inevitably produces noise and artifacts that are detrimental to information acquisition and medical diagnosis for CT images. This paper proposes a Wasserstein generative adversarial network (WGAN) with a convolutional block attention module (CBAM) to realize a method of directly synthesizing high-energy CT (HECT) images through low-energy scanning, which greatly reduces X-ray radiation from high-energy scanning. Specifically, our proposed generator structure in WGAN consists of Visual Geometry Group Network (Vgg16), 9 residual blocks, upsampling and CBAM, a subsequent attention block. The convolutional block attention module is integrated into the generator for improving the denoising ability of the network as verified by our ablation comparison experiments. Experimental results of the generator attention module ablation comparison indicate an optimization boost to the overall generator model, obtaining the synthesized high-energy CT with the best metric and denoising effect. In different methods comparison experiments, it can be clearly observed that our proposed method is superior in the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and most of the statistics (average CT value and its standard deviation) compared to other methods. Because P<0.05, the samples are significantly different. The data distribution at the pixel level between the images synthesized by the method in this paper and the high-energy CT images is also most similar. Experimental results indicate that CBAM is able to suppress the noise and artifacts effectively and suggest that the image synthesized by the proposed method is closest to the high-energy CT image in terms of visual perception and objective evaluation metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.