Abstract

ObjectivesThis study explored novel biomarkers that can affect the diagnosis and treatment in Alzheimer's Disease (AD) related to mitochondrial metabolism. MethodsThe authors obtained the brain tissue datasets for AD from the Gene Expression Omnibus (GEO) and downloaded the mitochondrial metabolism-related genes set from MitoCarta 3.0 for analysis. Differentially Expressed Genes (DEGs) were screened using the “limma” R package, and the biological functions and pathways were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The LASSO algorithm was used to identify the candidate center genes and validated in the GSE97760 dataset. PMAIP1 with the highest diagnostic value was selected and its effect on the occurrence of AD by biological experiments. ResultsA sum of 364 DEGs and 50 hub genes were ascertained. GO and KEGG enrichment analysis demonstrated that DEGs were preponderantly associated with cell metabolism and apoptosis. Five genes most associated with AD as candidate central genes by LASSO algorithm analysis. Then, the expression level and specificity of candidate central genes were verified by GSE97760 dataset, which confirmed that PMAIP1 had a high diagnostic value. Finally, the regulatory effects of PMAIP1 on apoptosis and mitochondrial function were detected by siRNA, flow cytometry and Western blot. siRNA-PMAIP1 can alleviate mitochondrial dysfunction and inhibit cell apoptosis. ConclusionThis study identified biomarkers related to mitochondrial metabolism in AD and provided a theoretical basis for the diagnosis of AD. PMAIP1 was a potential candidate gene that may affect mitochondrial function in Hippocampal neuronal cells, and its mechanism deserves further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call