Abstract

ObjectivesTo evaluate the mechanical, wear, antibacterial properties, and biocompatibility of injectable composite materials. MethodsTwo injectable composite resins (GU and BI), one flowable composite resin (FS), and one flowable compomer (DF), in A2 shade, were tested. Mechanical properties were tested via three-point bending test immediately after preparation and after 1-day, 7-day, 14-day, and 30-day water storage. Under water-PMMA slurry immersion, specimens were subjected to a 3-body wear test (10,000 cycles) against stainless steel balls, while the roughness, wear depth, and volume loss were recorded. After 1-day and 3-day MC3T3-E1 cell culture, cell viability was evaluated with CCK-8 test kits, while the cell morphology was observed under CLSM and SEM. Antibacterial properties on S. mutans were assessed via CFU counting, CLSM, and SEM observation. SPSS 26.0 was used for statistical analysis (α = 0.05). ResultsThe mechanical properties were material-dependent and sensitive to water storage. Flexural strength ranked GU > FS > BI > DF at all testing levels. Three nanocomposites had better wear properties than DF. No significant difference on 1-day cell viability was found, but DF showed significantly lower cell proliferation than nanocomposites on 3-day assessment. GU and FS had more favourable cell adhesion and morphology. CFU counting revealed no significant difference, while FS presented a slightly thicker biofilm and BI showed relatively lower bacteria density. ConclusionsInjectable nanocomposites outperformed the compomer regarding mechanical properties, wear resistance, and biocompatibility. The tested materials presented comparable antibacterial behaviours. Flowable resin-based composites’ performances are affected by multiple factors, and their compositions can be attributed. Clinical SignificanceA profound understanding of the mechanical, wear, and biological properties of the restorative material is imperative for the clinical success of dental restorations. The current study demonstrated superior properties of highly filled injectable composite resins, which imply their wider indications and better long-term clinical performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call