Abstract

The ability of a restorative material to withstand fracture is of crucial importance especially in stress-bearing area. Therefore, the study aims to analyse the fracture toughness of a large number of dental restorative materials categories. The fracture toughness (K(IC)) of 69 restorative materials belonging to ten materials categories-micro-hybrid, nanofilled, microfilled, packable, ormocer-based, and flowable resin-based composites (RBC), compomers and flowable compomers, as well as glass ionomer cements (GIC) and resin-modified GIC was measured by means of the single-edge notched-beam method after storing the samples (n = 8) for 24 h in distilled water. Data were analyzed with the one-way analysis of variance (ANOVA) followed by the Tukey's test and partial eta-squared statistics (p < 0.05). Large variations between the tested materials within a material category were found. The lowest fracture toughness was reached in the GIC group, followed by the microfilled RBCs, resin-modified GIC, and flowable compomers, which do not differ significantly among each other as a material group. The ormocer-based, packable, and micro-hybrid RBCs performed statistically similar, reaching the highest fracture toughness values. Between the two categories of flowables-composites and compomers-no differences were measured. The correlation between K(IC) and filler volume (0.34) and respective filler weight (0.40) was low. K(IC) increased with the volume fraction of fillers until a critical value of 57%, following with a plateau, with constant values until ca. 65% volume fraction. Above this value, K(IC) decreased slightly. Due to the very large variability of the fracture toughness within a material type, the selection of a suitable restorative material should have not been done with respect to a specific material category, especially in stress-bearing areas, but by considering the individual measured material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.