Abstract

The authors compared the polymerization contraction stress produced by flowable resin-based composites with stress values produced by nonflowable composites. They also measured the stress reduction produced by placing a precured layer of flowable composite under a nonflowable composite. The authors first tested four flowable and six nonflowable composite materials for contraction stress in a tensiometer. In the second part of the study, they applied a 1.4-millimeter-thick layer of flowable composite or unfilled resin and precured it in the test apparatus to assess the stress relief produced by a low-modulus material during light curing of a subsequent layer of highly filled composite. Flexural moduli of the precured materials were determined via a three-point bending test. The stress values ranged between 6.04 and 9.10 megapascals. The authors found no significant differences in stress between flowable and nonflowable composites. Microfilled composites produced lower contraction stress than did hybrids. The flexural modulus of the flowable composites varied between 4.1 and 8.2 GPa. Regarding the effect of a precured layer of composite on contraction stress, the authors observed significant reductions with only one of the flowable materials and with the unfilled resin. The flowable composites produced stress levels similar to those of nonflowable materials. Most of the flowable materials tested did not produce significant stress reductions when used under a nonflowable composite. Using a flowable resin-based composite as a restorative material is not likely to reduce the effects of polymerization stress. When used in a thin layer under a nonflowable composite, the stress reduction depended on the elastic modulus of the lining material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.