Abstract

AbstractA near-continuous series of global retrievals of sea surface temperature (SST) has been made from the Along-Track Scanning Radiometer (ATSR) series of instruments from 1991 to 2005. To analyze possible long-term trends in the global or regional SST throughout the period daily anomalies are computed using a 1961–90 daily climatology, averaged into global monthly means, and plotted as a global time series. To evaluate any biases in these anomalies they are compared with other satellite SST datasets that have been computed and compared over the same time period. Global infrared satellite SST data have been received from the Advanced Very High Resolution Radiometer (AVHRR) series, microwave SST data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and global microwave SST data from the Advanced Microwave Sounding Radiometer (AMSR)-E on Aqua. Additionally, the anomalies have also been compared with the Hadley Centre Global Sea Ice Coverage and Sea Surface Temperature (HadISST1) anomalies. HadISST1 is a globally complete 1° SST analysis compiled from in situ and bias-corrected AVHRR SSTs at the Met Office (UK).The results of the study show the high accuracy of the Advanced Along Track Scanning Radiometer (AATSR) SSTs, but there are concerns with the NOAA-14 AVHRR data (1996–2000) being biased cold, especially in the Northern Hemisphere, and the AMSR-E SSTs (version 4), which show unexplained biases. Since 1999 TMI SSTs appear to have a consistently warm (∼0.2 K) bias relative to the infrared sensors and HadISST1.The time series in (A)ATSR SSTs indicate the possibility of warming trends between 0.1 and 0.2 K decade−1, but the remaining ATSR-1 data are required to confirm this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.