Abstract
Objective Using the Chinese anthropomorphic chest phantom to measure the absorbed dose of various tissues and organs under different noise index, and to assess the radiation dose of MSCT chest scanning with the effective dose(ED). Methods The equivalence of the Chinese anthropomorphic chest phantom(CDP-1C) and the adult chest on CT sectional anatomy and X-ray attenuation was demonstrated. The absorbed doses of various tissues and organs under different noise index were measured by laying thermoluminescent dosimeters(TLD) inside the phantom, and the corresponding dose-length products(DLP) were recorded. Both of them were later converted into ED and comparison was conducted to analyze the dose levels of chest CT scanning with automatic tube current modulation (ATCM) under different noise index. Student t-test was applied using SPSS 12.0 statistical software. Results The Phantom was similar to the human body on CT sectional anatomy. The average CT value of phantom are -788.04 HU in lung,45.64 HU in heart,65.84 HU in liver,254.32 HU in spine and the deviations are 0.10%,3.04%, 4.49% and 4.36% respectively compared to humans. The difference of average CT value of liver was statistically significant(t=-8.705,P<0.05),while the differences of average CT values of lung, heart and spine were not significant(t value were -0.752,-1.219,-1.138,respectively and P>0.05).As the noise index increased from 8.5 to 22.5, the DLP decreased from 393.57 mGy·cm to 78.75 mGy·cm and the organs dose declined. For example, the average absorbed dose decreased from 22.38 mGy to 3.66 mGy in lung. Compared to ED calculating by absorbed dose, the ED calculating by DLP was lower. The ED values of the two methods were 6.69 mSv and 8.77 mSv when the noise index was set at 8.5. Conclusions Application of the Chinese anthropomorphic chest phantom to carry out CT dose assessment is more accurate. The noise index should be set more than 8.5 during the chest CT scanning based on ATCM technique. Key words: Phantoms, imaging; Densitometry,X-ray; Radiation dosage
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have