Abstract

Charge transport in an ambipolar organic field-effect transistors (OFETs) is discussed in accordance to the potential profiles reconstructed from the electric-field induced second-harmonic generation experiment. The Maxwell-Wagner model based on drift-diffusion equation in OFET is used for the potential profile analysis. A good agreement between dielectric model and the experiment suggests importance of the space-charge field effects in the design of the ambipolar light-emitting OFETs. Further, the highest enhancement of the electric field is on zero-potential position in the channel, which represents the meeting point of electrons and holes and is an origin of the electroluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.