Abstract

Dysfunctional neutrophil (PMN) apoptosis facilitates hyperinflammatory tissue injury. Previous work has demonstrated that post-hemorrhagic shock mesenteric lymph (PHSML) provokes PMN-mediated acute lung injury in animal models, but the mechanism remains unclear. We have documented that the lipid fraction of PHSML is responsible for PMN priming of the respiratory burst. In this study, we hypothesized that PHSML lipids delay PMN apoptosis and thereby further enhance PMN cytotoxic potential. Mesenteric lymph was collected from rats (n = 5) before (control), during non-lethal hemorrhagic shock (MAP 40 mmHg, 30 min), and during resuscitation (shed blood + 2x crystalloid). Human PMNs were incubated with control, PHSML, PHSML lipid extracts, and heat-treated PHSML (60 degrees C, 30 min.) at 1-10% (v:v) in RPMI 1640 for 24 h. Apoptosis was assessed using acridine orange/ethidium bromide staining and fluorescence microscopy. Priming of the respiratory burst was evaluated by incubating PMNs with (a) control PHSML or (b) PHSML lipid extracts for 24 h and by activating with fMLP (1 micromol/L). PHSML and PHSML lipid extracts (5-10%) inhibited PMN apoptosis. Heat denaturing the PHSML (to eliminate cytokines and complement) had no effect on the inhibition of PMN apoptosis. Similarly, incubation with polymixin B at a concentration that binds endotoxin had no effect. Both the PHSML and PHSML lipids (5%) following 24-h incubation primed the fMLP-activated oxidase. At physiologic concentrations, both PHSML and the lipid fraction of PHSML delay PMN apoptosis and prime the NADPH oxidase. These data further implicate the lipid components of mesenteric lymph as central in the pathogenesis of hemorrhagic shock induced PMN-mediated acute lung injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call