Abstract

Acute lung injury (ALI) is a severe complication of sepsis, characterized by inflammation, edema, and injury to alveolar cells, leading to high mortality rates. Septic ALI is a complex disease involving multiple factors and signaling pathways. STEAP family member 1 (STEAP1) has been reported to be upregulated in a sepsis-induced ALI model. However, the role of STEAP1 in the regulation of septic ALI is not yet fully understood. The study stimulated human pulmonary microvascular endothelial cells (HPMECs) using lipopolysaccharides (LPS) to establish an in vitro ALI model. The study used quantitative real-time polymerase chain reaction (qRT-PCR) to measure mRNA expression, and western blotting assay or immunohistochemistry (IHC) assay to analyze protein expression. Cell counting kit-8 (CCK-8) assay was performed to assess cell viability. Flow cytometry was conducted to analyze cell apoptosis. Tube formation assay was used to analyze the tube formation rate of human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assays (ELISAs) were used to measure the levels of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). The levels of Fe2+ and reactive oxygen species (ROS) were determined using colorimetric and fluorometric assays, respectively. The glutathione (GSH) level was also determined using a colorimetric assay. m6A RNA immunoprecipitation assay, dual-luciferase reporter assay, and RNA immunoprecipitation assay were performed to identify the association of STEAP1 with methyltransferase 14, N6-adenosine-methyltransferase non-catalytic subunit (METTL14) and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2). The transcript half-life of STEAP1 was analyzed by actinomycin D assay. Finally, a rat model of polymicrobial sepsis was established to analyze the effects of STEAP1 knockdown on lung injury in vivo. We found that the mRNA expression levels of STEAP1 and METTL14 were upregulated in the blood of ALI patients induced by sepsis compared to healthy volunteers. LPS treatment increased the protein levels of STEAP1 and METTL14 in HPMECs. STEAP1 depletion attenuated LPS-induced promoting effects on HPMECs' apoptosis, inflammatory response, and ferroptosis, as well as LPS-induced inhibitory effect on tube formation. We also found that METTL14 and IGF2BP2 stabilized STEAP1 mRNA expression through the m6A methylation modification process. Moreover, METTL14 silencing attenuated LPS-induced effects by decreasing STEAP1 expression in HPMECs, and STEAP1 silencing ameliorated cecal ligation and puncture-induced lung injury of mice. METTL14/IGF2BP2-mediated m6A modification of STEAP1 aggravated ALI induced by sepsis. These findings suggest potential therapeutic targets for the treatment of this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.