Abstract

We establish a functional central limit theorem for a sequence of least squares residuals of spatial data from a linear regression model. Under mild assumptions on the model we explicitly determine the limit process in the case where the assumed linear model is true. Moreover, in the case where the assumed linear model is not true we explicitly establish the limit process for the localized true regression function under mild conditions. These results can be used to develop non-parametric model checks for linear regression. Our proofs generalize ideas of a univariate geometrical approach due to Bischoff [W. Bischoff, The structure of residual partial sums limit processes of linear regression models, Theory Stoch. Process. 8 (24) (2002) 23–28] which is different to that proposed by MacNeill and Jandhyala [I.B. MacNeill, V.K. Jandhyala, Change-point methods for spatial data, in: G.P. Patil, et al. (Eds.), Multivariate Environmental Statistics. Papers Presented at the 7th International Conference on Multivariate Analysis held at Pennsylvania State University, University Park, PA, USA, May 5–9 1992, in: Ser. Stat. Probab., vol. 6, North-Holland, Amsterdam, 1993, pp. 289–306 (in English)]. Moreover, Xie and MacNeill [L. Xie, I.B. MacNeill, Spatial residual processes and boundary detection, South African Statist. J. 40 (1) (2006) 33–53] established the limit process of set indexed partial sums of regression residuals. In our framework we get that result as an immediate consequence of a result of Alexander and Pyke [K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582–597]. The reason for that is that by our geometrical approach we recognize the structure of the limit process: it is a projection of the Brownian sheet onto a certain subspace of the reproducing kernel Hilbert space of the Brownian sheet. Several examples are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.