Abstract

Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus of variations with functionals depending on derivatives and/or integrals of noninteger order is a rather recent subject that is currently in fast development due to its applications in physics and other sciences. In the last decade, several approaches to fractional variational calculus were proposed by using different notions of fractional derivatives and integrals. Although the literature of the fractional calculus of variations is already vast, much remains to be done in obtaining necessary and sufficient conditions for the optimization of fractional variational functionals, existence and regularity of solutions. Regarding necessary optimality conditions, all works available in the literature concern the derivation of first-order fractional conditions of Euler–Lagrange type. In this work, we obtain a Legendre second-order necessary optimality condition for weak extremizers of a variational functional that depends on fractional derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.