Abstract

This paper analyzes a class of fractional calculus of variations problems and their associated Euler-Lagrange (fractional differential) equations. Unlike the existing fractional calculus of variations which is based on the classical notion of fractional derivatives, the fractional calculus of variations considered in this paper is based on a newly developed notion of weak fractional derivatives and their associated fractional order Sobolev spaces. Since fractional derivatives are direction-dependent, using one-sided fractional derivatives and their combinations leads to new types of calculus of variations and fractional differential equations as well as nonstandard Neumann boundary operators. This paper establishes the well-posedness and regularities for a class of fractional calculus of variations problems and their Euler-Lagrange (fractional differential) equations. This is achieved first for one-sided Dirichlet energy functionals which lead to one-sided fractional Laplace equations, then for more general energy functionals which give rise to more general fractional differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.