Abstract

Second-order necessary optimality conditions play an important role in optimization theory. This is explained by the fact that most numerical optimization algorithms reduce to finding stationary points satisfying first-order necessary optimality conditions. As a rule, optimization problems, especially the high dimensional ones, have a lot of stationary points so one has to use second-order necessary optimality conditions to exclude nonoptimal points. These conditions are closely related to second-order constraint qualifications, which guarantee the validity of second-order necessary optimality conditions. In this paper, strong and weak second-order necessary optimality conditions are considered and their validity proved under so-called critical regularity condition at local minimizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.