Abstract
We have analyzed the kinetoplast DNA from Trypanosoma equiperdum (American Type Culture Collection 30019) and two dyskinetoplastic strains derived from it. The DNA networks from the kinetoplastic strain are made up of catenated mini-circles and maxi-circles, like the networks from the closely-related Trypanosoma brucei. The mini-circles of T. equiperdum lack the pronounced sequence heterogeneity of T. brucei mini-circles, as shown by the fragment distribution of restriction digests and by the predominance of well-matched duplexes in electron micrographs of renatured DNA. The electrophoretic analysis of kinetoplast DNA digested with various restriction endonucleases shows the maxi-circle of T. equiperdum to consist of circular DNA molecules of 8.4 · 10 6 daltons, without size or sequence heterogeneity or repetitious segments. A comparison of the sequence of this maxi-circle with that of T. brucei (13.4 · 10 6 daltons) by restriction endonuclease fragmentation and hybridization shows extensive sequence homology. The size difference between both maxi-circles is due to the deletion of one continuous segment of 5 · 10 6 daltons. In the two dyskinetoplastic strains, we cannot detect DNA sequences that hybridize with kinetoplast DNA from T. brucei or from the kinetoplastic strain of T. equiperdum. In one of these strains, a ‘low-density’ DNA fraction contained a simple sequence DNA, cleaved by restriction endonuclease HindIII into fragments of 180 base-pairs and multimers of this. The relation of this DNA to kinetoplast DNA, if any, is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.