Abstract

Arginine-rich histones H2A, H2B, H3 and H4 contain two regions of interaction with cyclic nucleotide-dependent protein kinases: a substrate phosphorylation site and a region which noncompetitively inhibits cyclic nucleotide binding to the protein kinases. We have compared the interaction of cyclic nucleotide-dependent protein kinases with these two sites in histones which are organized in nucleosome structures with the interaction of the enzymes with free histones. Whereas histones in solution are readily phosphorylated by cyclic GMP-dependent protein kinase and the catalytic subunit of cyclic AMP-dependent protein kinase, mononucleosomes are not phosphorylated by these enzymes. Histones extracted from mononucleosomes can be phosphorylated, indicating that the lack of phosphorylation of nucleosomes is not due to covalent modification of the histones but to their organization within the nucleosome structure. Whereas histones in solution are effective noncompetitive inhibitors of cyclic GMP binding to cyclic GMP-dependent protein kinase and of cyclic AMP binding to the regulatory subunits of cyclic AMP-dependent protein kinase, mononucleosomes do not affect cyclic nucleotide binding. These studies indicate that histones which are organized in nucleosome structures are neither substrates nor modifiers of cyclic nucleotide-dependent protein kinases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.