Abstract

BackgroundAlzheimer’s Disease (AD) is a neurodegenerative disease with mitochondrial dysfunction and oxidative stress. Oxeiptosis is a cell death pathway sensitive to reactive oxygen species (ROS). This study investigates the role of oxeiptosis pathway and mitochondrial damage in AD. MethodsAn AD model was developed in C57BL/6 mice by injecting Aβ1-42 oligomers into the brain. Cognitive function was tested using the Morris water maze. Exposure of HT22 mouse hippocampal neurons to H2O2 induces oxidative stress. Protein levels of KEAP1, PGAM5 and AIFM1 were analyzed by western blot, and mitochondrial damage was observed with electron microscopy. Cell survival rates were using the CCK8 assay and flow cytometry after knocking down KEAP1, PGAM5 and AIFM1. ResultsThe protein concentrations of KEAP1, PGAM5 and AIFM1 were found to be elevated in the hippocampal tissues of AD mice compared to control group, accompanied by mitochondrial damage in the hippocampal neurons of the AD group. Similarly, in the HT22 oxidative stress model, there was an increase in the protein levels of KEAP1, PGAM5 and AIFM1, along with observed mitochondrial damage. Following individual and combined knockdown of KEAP1, PGAM5 and AIFM1, cell survival rates under oxidative stress conditions were higher compared to H2O2 group, with no significant difference in cell survival rates among the knockdown groups. ConclusionThis research underscores the critical role of the KEAP1/PGAM5/AIFM1-mediated oxeiptosis pathway in neuronal cell death, offering insights into potential therapeutic targets for mitigating neurodegeneration in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.