Abstract

Over the past 10 to 15 years, a vast collection of studies have provided evidence indicating that reactive oxygen species (ROS), particularly superoxide (O2·−) and hydrogen peroxide (H2O2), contribute to the pathogenesis of cardiovascular diseases, such as heart failure and hypertension. Griendling et al1 first demonstrated that NADPH oxidase present in the vasculature is a primary source of the elevated ROS levels. Since these initial studies, NADPH oxidase-derived ROS in the kidney,2 heart,3 and brain4 have been linked to the development and progression of numerous cardiovascular-related diseases. More recently, however, mitochondria have also been identified as important sources of ROS in controlling cardiovascular function. Considering that mitochondria are the primary source of ROS in most cells during normal respiration because of the leaking of electrons from the electron transport chain (ETC), perhaps it should not be all that surprising that mitochondrial-produced ROS are involved in pathophysiological conditions of the cardiovascular system. To date, most of the evidence linking mitochondrial dysfunction and mitochondrial-produced ROS to the pathogenesis of cardiovascular diseases comes from studies on the peripheral renin-angiotensin system.5 For example, using a model of cardiac ischemic reperfusion injury, Kimura et al6 reported that angiotensin II (Ang II)-induced preconditioning is mediated by mitochondrial-produced ROS. The authors further demonstrated that Ang II-induced NADPH oxidase-derived ROS lie upstream of mitochondrial-produced ROS, thus, implicating a ROS-induced ROS mechanism. Similarly, it was demonstrated recently that, in aortic endothelial cells, Ang II-induced NADPH oxidase activation leads to an increase in mitochondrial ROS production, as well as mitochondrial dysfunction, as determined by a decrease in mitochondrial membrane potential and mitochondrial respiration.7 Together, these studies and others (detailed elsewhere5) clearly illustrate a role for mitochondrial-produced ROS and mitochondrial dysfunction in peripheral tissues in the pathogenesis of …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call