Abstract

Mitochondria were first described in 1840 as bioblasts, elementary organisms responsible for vital cellular functions, but were subsequently named mitochondria, from the Greek names mitos (thread) and chondros (granule), which describes their appearance during spermatogenesis.1 Their discovery generated substantial interest given their structure resembling bacteria, which led in subsequent years to important scientific discoveries positioning mitochondria as the energy powerhouse of the cell. The unique architecture of mitochondria, consisting of 2 membranes (outer and inner) and compartments (intermembrane space and matrix), is crucial for their vital functions. Mitochondria serve not only as primary sources of cellular energy, but also modulate several cellular processes, including oxidative phosphorylation, calcium homeostasis, thermogenesis, oxygen sensing, proliferation, and apoptosis.2 Therefore, mitochondrial injury and dysfunction might be implicated in the pathogenesis of several diseases. Hypertension accounts for nearly 30% of patients reaching end-stage renal disease.3 Renal injury secondary to hypertension or to ischemia associated with renovascular hypertension (distal to renal artery stenosis) may have significant and detrimental effect on health outcomes. Studies have highlighted several deleterious pathways, including inflammation, oxidative stress, and fibrosis that are activated in the hypertensive kidney, eliciting functional decline.4,5 However, the precise molecular mechanisms responsible for renal injury have not been fully elucidated. Over the past few years, increasing evidence has established the experimental foundations linking mitochondrial alterations to hypertensive renal injury (Table). Mitochondriopathies, abnormalities of energy metabolism secondary to sporadic or inherited mutations in nuclear or mitochondrial DNA (mtDNA) genes, may contribute to the development and progression of hypertension and its complications. In addition, several studies have reported mitochondrial damage and dysfunction consequent to hypertensive renal disease. View this table: Table. Evidence of Renal Mitochondrial Damage in Models of Hypertension and Antihypertensive Treatment Importantly, hypertensive-induced renal injury is characterized by activation of several deleterious pathways, including oxidative stress, renin–angiotensin–aldosterone …

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.