Abstract

Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential genetic changes maintaining the stability of this mutualism. A multi-gene phylogeny reveals one origin of the symbiosis within Amanita, with a single transition from saprotrophic decomposition of dead organic matter to biotrophic dependence on host plants for carbon. Associated with this transition are the losses of two cellulase genes, each of which plays a critical role in extracellular decomposition of organic matter. However a third gene, which acts at later stages in cellulose decomposition, is retained by many, but not all, ectomycorrhizal species. Experiments confirm that symbiotic Amanita species have lost the ability to grow on complex organic matter and have therefore lost the capacity to live in forest soils without carbon supplied by a host plant. Irreversible losses of decomposition pathways are likely to play key roles in the evolutionary stability of these ubiquitous mutualisms.

Highlights

  • Diverse prokaryotic and eukaryotic microbes have evolved to form mutualistic symbioses with eukaryotic hosts, conjoining the evolutionary trajectories of distant lineages on the tree of life [1], [2]

  • Using the genus Amanita, we demonstrate that the irreversible loss of genes required for autonomous growth is associated with the evolution of an ectomycorrhizal symbiosis

  • We cannot determine if the loss of cellulases was a prerequisite for the evolution of the EM symbiosis in Amanita, or a consequence

Read more

Summary

Introduction

Diverse prokaryotic and eukaryotic microbes have evolved to form mutualistic symbioses with eukaryotic hosts, conjoining the evolutionary trajectories of distant lineages on the tree of life [1], [2]. Comparisons between endosymbiotic and free-living Proteobacteria have identified a number of genetic changes associated with the transition to mutualism, including the loss of genes needed for autonomous growth [1], [4], [12] It is unclear if patterns associated with the evolution of prokaryotic endosymbioses can be generalized to other phylogenetically and functionally distinct symbioses, including mutualisms of ectosymbionts or eukaryotic microbes. Another obstacle to understanding the origins of symbiosis is the limited number of biological systems with tractable, clearly defined, and closely related symbiotic and free-living species. While major transitions between free-living and symbiotic niches have been identified across large-scale phylogenies [9], [13], the fine-scale mapping of these transitions is hampered by poorly resolved phylogenies, and experiments are made difficult by our limited ability to manipulate free-living and symbiotic taxa [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call