Abstract
Beclin 1 and LC3 are important autophagy regulation proteins involved in vesicle nucleation and extension stage, respectively. In the present study, a Beclin 1 and a LC3 were identified from Yesso scallop Patinopecten yessoensis (PyBeclin 1 and PyLC3). The open reading frame (ORF) of PyBeclin 1 was of 1335 bp encoding a putative polypeptide of 444 amino acid residues with an N-terminal BCL-2 homology 3 (BH3) domain, a central coiled-coil domain (CCD), and a C-terminal evolutionarily conserved domain (ECD). The ORF of PyLC3 was of 369 bp encoding a putative polypeptide of 122 amino acid residues with an APG12 domain. The deduced amino acid sequences of PyBeclin 1 and PyLC3 shared 31.92–74.09% and 68.38–79.50% identities with Beclin 1s and LC3s from other species, respectively. The mRNA transcripts of PyBeclin 1 and PyLC3 were found to be expressed in all the examined tissues, including adductor muscle, gonad, gill, haemocytes and mantle, with the highest expression level in gill and haemocytes. The mRNA expression level of PyBeclin 1 in haemocytes increased significantly at 1, 3, 6, 12 and 24 h (2.98–4.07 fold of that in the Blank group, p < 0.05), and returned to normal level at 48 h after acute high temperature stress at 25 °C. Unlike PyBeclin 1, the mRNA transcripts of PyLC3 in haemocytes were significantly up-regulated at1, 3, 6 and 12 h (1.80–2.54 fold of that in the Blank group, p < 0.05), then decreased to blank level at 24 h (p > 0.05), and increased significantly again at 48 h (3.70 fold of that in the Blank group, p < 0.05) after high temperature. PyBeclin 1 and PyLC3 were mainly located in the cytoplasm and a small amount in the nucleus with few puncta, and the numbers of PyBeclin 1 and PyLC3 puncta increased at 3 h after acute high temperature stress. The LC3-II levels in gill and haemocytes were significantly up-regulated at 1 h and 3 h after acute high temperature stress. These results collectively suggested that PyBeclin 1 and PyLC3 were conserved members of Beclin 1 and LC3 family in scallops, and involved in regulating the activation of autophagy in scallops after acute high temperature stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have