Abstract

Cortisol is the main stress hormone that plays crucial roles in energy metabolism and immune response in vertebrates. In the present study, the homologues of 11β-hydroxysteroid dehydrogenase type 1 (designated Cg11β-HSD1) and 5α-reductase 1 (designated Cg5αR1), the key enzymes related to cortisol metabolism, were identified from Pacific oyster Crassostrea gigas. The Cg11β-HSD1 harbored a conserved SDR domain, and Cg5αR1 contained a Steroid_dh domain and three transmembrane domains. The mRNA transcripts of Cg11β-HSD1 and Cg5αR1 were constitutively expressed in all the examined tissues of oysters, with the highest expression level in haemocytes and labial palp, respectively. After acute high temperature stress (28 °C), the mRNA expression level of Cg11β-HSD1 in hepatopancreas significantly up-regulated at 6 h and 12 h, and that of Cg5αR1 significantly up-regulated at 6 h, compared with the Blank group (11 °C). The concentration of cortisol and glucose, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas all significantly up-regulated after acute high temperature stress, while the glycogen concentration in adductor muscle decreased significantly at 6 h and 12 h. After the blockage of Cg11β-HSD1 with metyrapone, the cortisol concentration and the activities of SOD and CAT significantly decreased after acute high temperature stress, the glucose concentration in hepatopancreas significantly increased at 24 h, and the glycogen concentration in adductor muscle significantly increased at 6 h. These results collectively suggested that cortisol played a crucial role in regulating glucose metabolism and oxidative response in oysters upon acute high temperature stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call