Abstract
An initial–boundary-value problem for the nonlinear equations of real compressible viscous heat-conducting flow with general large initial data is investigated. The main point is to study the real flow for which the pressure and internal energy have nonlinear dependence on temperature, unlike the linear dependence for ideal flow, and the viscosity coefficients and heat conductivity are also functions of density and/or temperature. The shear viscosity is also presented. The existence, uniqueness and regularity of global solutions are established with large initial data in H1. It is shown that there is no shock wave, vacuum, mass concentration, or heat concentration (hot spots) developed in a finite time, although the solutions have large oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.