Abstract
A free boundary problem for nonlinear magnetohydrodynamics with general large initial data is investigated. The existence, uniqueness, and regularity of global solutions are established with large initial data in H1. It is shown that neither shock waves nor vacuum and concentration in the solutions are developed in a finite time, although there is a complex interaction between the hydrodynamic and magnetodynamic effects. An existence theorem of global solutions with large discontinuous initial data is also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.