Abstract
The compressible Navier–Stokes equations for viscous flows with general large continuous initial data, as well as with large discontinuous initial data, are studied. Both a homogeneous free boundary problem with zero outer pressure and a fixed boundary problem are considered. For the large initial data in H 1, the existence, uniqueness, and regularity of global solutions in H 1 for real viscous flows are established, and it is showed that neither shock waves nor vacuum and concentration in the solutions are developed in a finite time. For the large discontinuous data, the global existence of large weak solutions for the perfect gases is also established using a different argument, and it is indicated that the solutions do not develop vacuum or concentration although the solutions have large discontinuity. For the free boundary problem, the interface separating the flows from the zero outer pressure expands at a finite speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.