Abstract
As a promising material for marine engineering, the insufficient corrosion resistance of manganese aluminium bronze (MAB) alloy when exposed to the marine environment may limit its application. In the present work, micro-arc oxidation (MAO) of MAB alloy was conducted in an aluminate-based electrolyte with the influence of ultrasonic vibration (UV) examined. A porous ceramic film has been successfully produced on MAB via MAO, which exhibits dramatic increases in both film thickness and compactness after the introduction of UV. As a result, the ceramic film produced by ultrasound-assisted MAO (UMAO) exhibits an enhanced corrosion resistance relative to that via MAO, which also possesses a desired antifouling capability. Hence, the present work illustrates the influence of UV on the MAO behaviour of non-valve alloys and, more importantly, provides theoretical guidance for related surface modification strategies in marine engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.