Abstract

AbstractWater sorption was determined and dynamic‐mechanical measurements made on dry and water‐containing systems. Different types of surface treatments of the glass fiber were studied. Immobilization of polymer chains in the interphase is determined by the nature of the curing system, annealing conditions, and surface treatment of glass fibers. Penetrating water can be found at three kinds of locations in the composite; water in the interphase has different properties than water in the polymer matrix and in microvoids. This fact can be used as a microscopic probe in epoxy‐containing composites. Water content depends on the density of polar groups and the density of the network. At higher temperatures water causes crazes, at lower it mainly acts as a plasticizer. Water in crazes does not affect the glass transition temperature Tg, but it decreases (tan δ) and weakens the material. As long as water mainly goes into swelling, energy transfer between the resin and the matrix is not affected. The reinforcement then works as it should. The results demonstrate the importance of interphase properties on the behavior of the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.