Abstract
The elimination of cyclobutane pyrimidine dimers from the nuclear DNA of ultraviolet irradiated HeLa cells has been examined by means of chromatography and immunoautoradiography. The extent and duration of the process was similar when dimers were assayed by both methods, proving that the antisera recognized pyrimidine dimers. The rate of dimer excision did not differ through the cell cycle with the exception of mitosis during which no dimers were removed. Dimer excision is a relatively fast process which is terminated within a few hours, but it leaves many dimers in the DNA. Excision is depressed by inhibitors of semiconservative DNA synthesis that affect the DNA precursor pool or DNA polymerases. Cells whose DNA is partly substituted with bromodeoxyuridine instead of thymidine, repair single-strand breaks and remove dimers at the same rate but to different extents. On the other hand, inhibitors limit repair of breaks and removal of dimers to the same degree suggesting that the repair of the two types of lesion is coordinated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.