Abstract

The curing agents play an important role on the properties of the chemically bonded phosphate ceramic coatings (CBPCs). To investigate the influence of curing agents on the thermal property and corrosion resistance of CBPCs, the coatings with different curing agents were prepared on the mild steel (Q235). The analysis of thermal property and phase characterization shows that the high peak temperature of curing decreases with the introduction of curing agents, and the weight ratio of AlPO4 to α-Al2O3 (RAA) of the coatings is also influenced by curing agents resulted by the high heat release from MgO, CaO, and ZnO-related reactions. In addition, the results of scanning electron microscopy (SEM) and electrochemical experiments reveal that the bonding strength among the ceramic particles and the defects content of the coatings, which affects the inhibition properties of CBPCs have a relationship with the value of RAA. Typically, the impedance value of CBPC with the best curing agent (MgO) are around 40,000 ohm cm2, which is 4624 times larger than that of the bare mild steel (8.65 ohm cm2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.