Abstract
The scattering matrix (S-matrix), relating the initial and final states of a physical system undergoing a scattering process, is a fundamental object in quantum mechanics and quantum field theory. The study of factorized S-matrices, in which many-body scattering factorizes into a product of two-body terms to yield an integrable model, has long been considered the domain of mathematical physics. Many beautiful results have been obtained over several decades for integrable models of this kind, with far reaching implications in both mathematics and theoretical physics. The viewpoint that these were only toy models changed dramatically with brilliant experimental advances in realizing low-dimensional quantum many-body systems in the lab. These recent experiments involve both the traditional setting of condensed matter physics and the trapping and cooling of atoms in optical lattices to engineer and study quasi-one-dimensional systems. In some cases the quantum physics of one-dimensional systems is arguably more interesting than their three-dimensional counterparts, because the effect of interactions is more pronounced when atoms are confined to one dimension. This article provides a brief overview of these ongoing developments, which highlight the fundamental importance of integrability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.