Abstract

Ultracold atoms in optical lattices provide an ideal platform for exploring many-body physics of a large system arising from the coupling among a series of small identical systems whose few-body dynamics is exactly solvable. Using Landau-Zener (LZ) transition of bosonic atoms in double-well optical lattices as an experimentally realizable model, we investigate such few- to many-body routes by exploring the relation and difference between the small few-body (in one double well) and the large many-body (in double-well lattice) nonequilibrium dynamics of cold atoms in optical lattices. We find the many-body coupling between double wells greatly enhances the LZ transition probability. The many-body dynamics in the double-well lattice shares both similarity and difference from the few-body dynamics in one and two double wells. The sign of the on-site interaction plays a significant role in the many-body LZ transition. Various experimental signatures of the many-body LZ transition, including atom density, momentum distribution, and density-density correlation, are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call