Abstract
We developed a dual molasses technique which enabled us to perform high-sensitivity in situ fluorescence imaging of ytterbium (Yb) atoms in a two-dimensional optical lattice prepared in a thin glass cell. This technique successfully combines two different kinds of optical molasses for Yb atoms, that is, the one using the 1S0–1P1 transition which provides high-resolution in the in situ fluorescence imaging and the other using the 1S0–3P1 transition for cooling the atoms in the optical lattice. We performed in situ imaging of 174Yb atoms and could observe a Moiré pattern with a period of about 6 µm produced by the molasses beam with 556 nm and the optical lattice with 532 nm, which implies that the temperature was kept below the lattice depth during the fluorescence imaging. The number of photons per atom is estimated to be enough for single atom detection with our imaging system. This result is quite promising for the realization of an Yb quantum gas microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.