Abstract
Background: As the field of ancient DNA research continues to evolve and produce significant discoveries, it is important to address the crucial limitations it still faces. Under conducive conditions, DNA can persist for thousands of years within human skeletal remains, but, as excavation occurs, the environment abruptly changes, often leading to the loss of DNA and valuable genetic information. Proper storage procedures are needed to mediate DNA degradation and maintain sample integrity. This study aimed to investigate the impact of long-term storage under unregulated temperatures and humidity conditions on DNA preservation in human skeletal remains. Methods: To achieve this, archaeological petrous bones were used for DNA recovery. The DNA yield and degree of DNA degradation were compared for samples originating from historically and geographically equivalent archaeological sites, which differed in times of excavation and, consequently, in storage durations and conditions. DNA yield and the degree of DNA degradation were determined using real time PCR. Results: A significant reduction in the DNA yield and a borderline significant increase in the degree of DNA degradation were detected for samples stored at unregulated conditions for approximately 12 years. Conclusions: Our results show the imperative need for adhering to scientific recommendations regarding the optimal temperature and humidity in the long-term storage of human skeletal material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have