Abstract

Recovery of suitable amounts of DNA from ammunition cartridges for short tandem repeat (STR) or mitochondrial (mt) DNA analysis has been a challenge for crime laboratories. The metal composition of cartridge cases and projectiles exposes the DNA to harmful ions that damage and ultimately degrade the DNA such that it cannot be effectively amplified. The current study assessed the impact of time and storage conditions on touch DNA deposited on cartridge components of varying metal content: aluminum, nickel, brass, and copper. Elevated humidity levels facilitated greater DNA degradation and loss compared to low humidity (or "dry") conditions, indicating that recovered cartridge component evidence should be stored in a low-humidity environment immediately after collection, preferably with a desiccant. As expected, a relationship was observed between the amount of time elapsed since the cartridge components were handled and the associated DNA yield. Interestingly, while yields dropped considerably in the first 48-96h post-handling, regardless of the storage conditions, a layering effect was observed that helps maintain a relatively constant level of surface DNA over extended periods of time. An apparent layering effect was also observed on cartridge components following multiple surface depositions, where yields were two times higher than single deposition samples at similar timepoints. Overall, these findings suggest that storage conditions and a layering affect play an important role in the preservation of DNA on ammunition components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call