Abstract
AbstractAdopting aggregation techniques in power sector modelling led to disregarding the key characteristics of regions in terms of resource use, which may not completely capture the bottlenecks in the energy transition. This study provides a holistic approach to estimate its impact on the transition of the European power system from the perspective of energy return on investment (EROI) by using six energy transition scenarios based on three different spatial representations. The findings indicate that EROI trends are highly dependent on the spatial representation, technology selection and energy mix. Further additional capacities of complementary technologies along with an upsurge in renewable capacities drive EROI values down. Disregarding the physical distances in the energy modelling results in large EROI enhancement due to the artificial smoothing effect of the aggregation method. EROI values of the aggregated scenarios remain between 18 and 24 by 2050. In the case of 20 independent sub‐regions, the lowest EROI is obtained at about 14 by 2050, due to the limitation on optimal resource utilisation. Interconnection of the sub‐regions, which represents the best proximation to the real situation, increases the EROI to 17 by 2050.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.