Abstract

Sea ice formed over shallow Arctic shelves often entrains sediments resuspended from the sea floor. Some of this sediment-laden ice advects offshore into the Transpolar Drift Stream and the Beaufort Gyre of the Arctic Basin. Through the processes of seasonal melting at the top surface, and the freezing of clean ice on the bottom surface, these sediments tend, over time, to concentrate at the top of the ice where they can affect the surface albedo, and thus the absorbed solar radiation, when the ice is snow free. Similarly, wind-blown dust can reduce the albedo of snow. The question that is posed by this study is what is the impact of these sediments on the seasonal variation of sea ice, and how does it then affect climate? Experiments were conducted with a coupled energy balance climate-thermodynamic sea ice model to examine the impact of including sediments in the sea ice alone and in the sea ice and overlying snow. The focus of these experiments was the impact of the radiative and not the thermal properties of the sediments. The results suggest that if sea ice contains a significant amount of sediments which are covered by clean snow, there is only a small impact on the climate system. However, if the snow also contains significant sediments the impact on sea ice thickness and surface air temperature is much more significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.