Abstract
Here sea ice concentration derived from the Special Sensor Microwave Imager/Sounder and thickness derived from the Soil Moisture and Ocean Salinity and CryoSat-2 satellites are assimilated in the National Centers for Environmental Prediction Climate Forecast System using a localized error subspace transform ensemble Kalman filter (LESTKF). Three ensemble-based hindcasts are conducted to examine impacts of the assimilation on Arctic sea ice prediction, including CTL (without any assimilation), LESTKF-1 (with initial sea ice assimilation only), and LESTKF-E5 (with every 5-day sea ice assimilation). Assessment with the assimilated satellite products and independent sea ice thickness datasets shows that assimilating sea ice concentration and thickness leads to improved Arctic sea ice prediction. LESTKF-1 improves sea ice forecast initially. The initial improvement gradually diminishes after ~3-week integration for sea ice extent but remains quite steady through the integration for sea ice thickness. Large biases in both the ice extent and thickness in CTL are remarkably reduced through the hindcast in LESTKF-E5. Additional numerical experiments suggest that the hindcast with sea ice thickness assimilation dramatically reduces systematic bias in the predicted ice thickness compared with sea ice concentration assimilation only or without any assimilation, which also benefits the prediction of sea ice extent and concentration due to their covariability. Hence, the corrected state of sea ice thickness would aid in the forecast procedure. Increasing the number of ensemble members or extending the integration period to generate estimates of initial model states and uncertainties seems to have small impacts on sea ice prediction relative to LESTKF-E5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.