Abstract

The electromagnetic environment surrounding us has dramatically evolved over the past decade, with the proliferation of Wi-Fi, Bluetooth, and other wireless technologies becoming commonplace in our daily lives. Mobile phones emit non-ionizing low-frequency electromagnetic waves (EW). To examine the effects of EW on living cells, this study aims to explore the impact of cell phone EW on the developing brain of chick embryos. The fertilized eggs were allowed to develop under exposure to electromagnetic waves emitted by cell mobile. A cell phone was placed inside the incubator with 20 eggs and was called from outside on a precise schedule. The same number of fertilized eggs were placed in another incubator without a mobile phone and served as the control. Embryos were sacrificed on days 10 and 15, and the cerebral cortex and cerebellum were removed and sent for electron microscopy. In the control group, cerebral neurons appeared healthy, with a large, centrally placed nucleus, visible oligodendrocytes, and a less dense extracellular matrix. In contrast, neurons from the exposed group were smaller, fewer in number, with unclear nuclear margins, signs of shrinkage, and apoptosis and a dense extracellular matrix. In the cerebellum, the exposed group revealed a reduced number of Purkinje neurons and noticeable mitochondrial swelling. The blood-brain barrier remained intact in the control group but was compromised in the exposed group. We conclude that electromagnetic waves emitted by cell phones adversely affect the normal development of the brain in chick embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.