Abstract
BackgroundDiesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. Methods and resultsUtilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 μg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/β-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and β-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. ConclusionsOur study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ β-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.