Abstract

Abstract Surface pressure observations are assimilated into a Weather Research and Forecast ensemble using an ensemble Kalman filter (EnKF) approach and the results are compared with observations for two severe weather events. Several EnKF experiments are performed to evaluate the relative impacts of two very different pressure observations: altimeter setting (a total pressure field) and 1-h surface pressure tendency. The primary objective of this study is to determine the surface pressure observation that is most successful in producing realistic mesoscale features, such as convectively driven cold pools, which often play an important role in future convective development. Results show that ensemble-mean pressure analyses produced from the assimilation of surface temperature, moisture, and winds possess significant errors in regard to mesohigh strength and location. The addition of surface pressure tendency observations within the assimilation yields limited ability to constrain such errors, while the assimilation of altimeter setting yields accurate depictions of the mesoscale pressure patterns associated with mesoscale convective systems. The mesoscale temperature patterns produced by all the ensembles are quite similar and tend to reproduce the observed features. Results suggest that even though surface pressure observations can have large cross covariances with temperature and the wind components, the resulting analyses fail to improve upon the EnKF temperature and wind analyses that exclude the surface pressure observations. Ensemble forecasts following the assimilation period show the potential to improve short-range forecasting of surface pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call