Abstract

Abstract An ensemble-based data assimilation system using the Weather Research and Forecasting Model (WRF) has been used to initialize forecasts of prolific severe weather events from springs 2007 to 2009. These experiments build on previous work that has shown the ability of ensemble Kalman filter (EnKF) data assimilation to produce realistic mesoscale features, such as drylines and convectively driven cold pools, which often play an important role in future convective development. For each event in this study, severe weather parameters are calculated from an experimental ensemble forecast started from EnKF analyses, and then compared to a control ensemble forecast in which no ensemble-based data assimilation is performed. Root-mean-square errors for surface observations averaged across all events are generally smaller for the experimental ensemble over the 0–6-h forecast period. At model grid points nearest to tornado reports, the ensemble-mean significant tornado parameter (STP) and the probability that STP > 1 are often greater in the experimental 0–6-h ensemble forecasts than in the control forecasts. Likewise, the probability of mesoscale convective system (MCS) maintenance probability (MMP) is often greater with the experimental ensemble at model grid points nearest to wind reports. Severe weather forecasts can be sharpened by coupling the respective severe weather parameter with the probability of measurable rainfall at model grid points. The differences between the two ensembles are found to be significant at the 95% level, suggesting that even a short period of ensemble data assimilation can yield improved forecast guidance for severe weather events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call