Abstract

We investigate the formation of aqueous hydrogen peroxide (H2O2aq) in a DC discharge plasma-liquid system with liquid as the anode. The theoretical analysis and experimental results show that the H2O2aq formation process is mostly controlled by the aqueous electron-induced reactions in the liquid zone directly affected by the plasma. It is shown that the low H2O2aq yield in this system is caused by quenching the dissolved OH radicals through aqueous electrons and alkalization in the plasma-directly-affected liquid zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.