Abstract

The quantification of hydrogen peroxide (H2O2) generated in the plasma-liquid interactions is of great importance, since the H2O2 species is vital for the applications of the plasma-liquid system. Herein, we report on in situ quantification of the aqueous H2O2 (H2O2aq) using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode. The results show that the H2O2aq yield is 8–12 times larger when the liquid acts as a cathode than when the liquid acts as an anode. The conversion rate of the gaseous OH radicals to H2O2aq is 4–6 times greater in the former case. However, the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of nM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.