Abstract

The flip-chip bump interconnection structure has become popular for microwave and millimeter-wave package applications. This structure is expected to provide higher performance and a low cost packaging method. This paper presents the results of an evaluation of flip-chip assembled radio frequency (RF) devices. A coplaner transmission line type GaAs monolithic microwave integrated circuit (MMIC) was mounted on an aluminum oxide (Al/sub 2/O/sub 3/) substrate using the flip-chip thermal compression method. The electrical performance (S-parameter and noise figure) was measured and the reliability of the interconnection was tested. The changing rate of the characteristic impedance (Zo) of transmission line on bare-chip caused by bare-chip surface proximity to a substrate was simulated by finite element method (FEM) analysis. Flip-chip bonding conditions were fixed to keep the gap that less than 1% of Zo changing rate and sufficient bonding strength for reliability of interconnection. The DC characteristics of a 30 GHz, 60 GHz and 77 GHz band low noise amplifier (LNA) were the same before and after mounting, and the RF performance of the assembled MMIC was the same as the bare-chip without packaging. However, the influence of underfilling was observed. When epoxy resin was injected into the gap between the bare-chip and the substrate, the frequency band of the MMIC shifted to the low side. The reliability of the bump interconnection was excellent. The interconnection resistance did not change in a temperature cycle (-55/spl deg/C to +125/spl deg/C until 1500 cycle) test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.