Abstract

Three-dimensional (3-D) structures are used in many applications, including the fabrication of opto-electronic and bio-MEMS devices. Among the various fabrication techniques available for 3-D structures, nano imprint lithography (NIL) is preferred for producing nanoscale 3-D patterns because of its simplicity, relatively short processing time, and high manufacturing precision. For efficient replication in NIL, a precise 3-D stamp must be used as an imprinting tool. Hence, we attempted the fabrication of original 3-D master molds by low-voltage electron beam lithography (EBL). We then fabricated polydimethylsiloxane (PDMS) stamps from the original 3-D mold via replica molding with ultrasonic vibration.First, we experimentally analyzed the characteristics of low-voltage EBL in terms of various parameters such as resist thickness, acceleration voltage, aperture size, and baking temperature. From these e-beam exposure experiments, we found that the exposure depth and width were almost saturated at 3kV or lesser, even when the electron dosage was increased. This allowed for the fabrication of various stepped 3-D nanostructures at a low voltage. In addition, by using line-dose EBL, V-groove patterns could be fabricated on a cured electron resist (ER) at a low voltage and low baking temperature. Finally, the depth variation could be controlled to within 10nm through superposition exposure at 1kV. From these results, we determined the optimum electron beam exposure conditions for the fabrication of various 3-D structures on ERs by low-voltage EBL. We then fabricated PDMS stamps via the replica molding process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call