Abstract

In many technological applications of cork, this biomaterial is under strongly localized contact stresses, which largely differ from the homogeneous distribution of stresses of the typical uniaxial compression tests. Indentation tests constitute an excellent form of determining the behavior of the materials under localized stresses. In the present study, the applicability of Hertzian and Brinell indentation tests to the evaluation of the mechanical properties of cork is tested. One of the main conclusions of the study is that the elastic anisotropy of the material is related to the anisotropic structure of the different sections cut from a cork sample, a clear difference between the back tangential section and the other sections being observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.