Abstract

The detection and accurate genotyping of human papillomavirus (HPV) infection is critical for preventing and effectively treating cervical cancer. A multiplex fluorescent polymerase chain reaction (PCR) coupled with a capillary electrophoresis method was developed for the simultaneous detection of the 16 most prevalent HPV genotypes. Twenty-five pairs of primers were ultimately selected to ensure that both E and L regions of nine HPV genotypes, as well as the Eregions of seven HPV genotypes could be accurately amplified. This method enables the simultaneous detection and differentiation of 16 HPV genotypes in a single closed-tube reaction, accurately distinguishing products with molecular weight differences >1 bp through capillary electrophoresis. This method demonstrated exceptional accuracy, specificity, and repeatability with a detection limit of 10 copies/μL for all 16 HPV genotypes. Furthermore, 152 cervical swab specimens were obtained to compare the disparities between this approach and Cobas 4800 HPV detection method. The concordance rate and κ value were 90.1% and 0.802, respectively, indicating a high level of agreement. The established detection method was successfully applied to cervical swab specimens for determining HPV genotypes across all levels of cervical lesions, HPV52, 56, 16, and 59 were found to be most prevalent with infection rates of 10.8%, 9.1%, 6.5%, and 6.2%, respectively. This study has successfully established a detection method capable of simultaneously identifying 16 HPV genotypes. This approach can be further applied to HPV vaccine research and surveillance, with the potential for broad applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call