Abstract
Assuming that a hypothesis is true because insufficient evidence has been found to reject it is a very common error when interpreting the p-value of a test in biomedical research. For example, a value of p = 0.28 obviously does not mean the null hypothesis should be ruled out, but if we understand what it means (which is not a mathematical issue, but instead a purely logical one) that it is equally obvious that it cannot be stated that it is true. If the samples in a comparison of a new drug with an old one show that the new one has a higher healing percentage and the p-value of the test is 0.0004, for example, the scientific community concludes that the new one is better. However, if for example the p-value of the test is 0.14, the scientific community does not conclude that the new one is as good as the old one. It merely concludes that the new one has not been shown to outperform the other one. It is therefore possible that an extension of the study with more cases may demonstrate that the new one is better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.