Abstract

The ene reactions of nitroso compounds were studied with B3LYP/6-31G* geometry optimizations and energy calculations, along with single point energy evaluations using CASPT2/6-31G** and UCCSD(T)/6-311+G* methods. Reactions of HNO with propene and of MeNO and p-NO2C6H4NO with propene or substituted alkenes were also studied. The reaction mechanism is stepwise and involves a polarized diradical intermediate. The electronic structure of this intermediate is between that of a closed shell polar species and that of a pure diradical, and it is stabilized by polar solvents. A weak C-N bonding interaction combined with a CH-O hydrogen bond leads to heightened barriers to rotation about formally single bonds compared to conventional diradicals. Consequently, rotation is slower than hydrogen abstraction and cyclization to form an aziridine N-oxide. This aziridine N-oxide does not lead to ene products without subsequent ring opening but provides a mechanism for the RNO moiety to translate from one end of the alkene to the other. B3LYP calculations are also able to reproduce kinetic isotope effects and regioselectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.